Что такое время жизни пакета (TTL). TTL - это что такое? Для чего применяется TTL и в каких сферах

TTL - время жизни пакета данных в протоколе IP. Чем TTL может заинтересовать обычного пользователя? Наверняка, большинство из Вас оказались на этой странице с целью узнать, как обойти ограничения на раздачу интернета со смартфона. Контроль TTL используется операторами мобильной связи для обнаружения трафика несанкционированного подключенного устройства. Из этого обзора Вы узнаете, как именно TTL помогает провайдеру узнать о раздаче интернета с помощью Wi-Fi или USB и каким образом обычному абоненту обхитрить жадного оператора. Мы постараемся доходчиво объяснить, что такое TTL и как это значение может помочь абонентам.

Принцип работы TTL

К сожалению, безлимитный мобильный интернет без каких-либо ограничений на сегодняшний день не предоставляется ни одним оператором. Существуют тарифы, которые предусматривают отсутствие ограничений по скорости и трафику, но при использовании SIM-карты только в смартфоне. Также нельзя делиться интернетом с другими устройствами. Если вы включите на смартфоне точку доступа Wi-Fi или подключитесь к ноутбуку по USB, оператор моментально зафиксирует этот факт и предпримет соответствующие меры (предложит дополнительно заплатить). Многие недоумевают, что за технологии позволяют провайдеру вычислить раздачу интернета. На самом деле все гораздо проще, чем кажется. Чтобы не позволять абонентам делиться интернетом с другими устройствами, оператору достаточно контролировать TTL. Например, если Вы включите на телефоне режим модема, исходящий от подключенных устройств TTL будет на 1 меньше, чем у смартфона, на что незамедлительно отреагирует провайдер. Манипуляции с ТТЛ позволяют обойти ограничение на тетеринг.

Если вы все еще не поняли, что такое TTL и какой у него принцип работы, ознакомьтесь с приведенной ниже инфографикой.

Девайс работает без раздачи интернета.


У iOS и Android устройств TTL по умолчанию равен 64. Если телефон не раздает интернет другим устройствам, все пакеты уходят к оператору со значением TTL=64.

Девайс раздает интернет.

При попытке раздачи интернета с помощью Wi-Fi, Bluetooth или USB на другие устройства, например, ноутбук и еще один телефон, пакеты от раздающего устройства, по-прежнему, уходят со значением TTL=64. Пакеты от компьютера/ноутбука до раздающего интернет устройства доходят со значением TTL=128 (значение для Windows по умолчанию), теряют единицу на раздающем устройстве и уходят к оператору с TTL=127. Пакеты от принимающего интернет телефона доходят до раздающего устройства с TTL=64 и уходят к оператору с TTL=63, потеряв одну единицу. Для оператора это означает, что абонент раздает интернет, о чем свидетельствуют пакеты с тремя разными значениями TTL. В итоге, провайдер предпринимает соответствующие меры в отношении такого абонента.

Девайс раздает интернет с корректировкой TTL.

Чтобы оператор не вычислил факт запуска тетеринга, необходимо изменить на раздающем интернет устройстве TTL по умолчанию таким образом, чтобы пакеты с других устройств при потере единицы от TTL имели значение, которое было задано для раздающего устройства “по умолчанию”. На приведенной выше картинке видно, что после корректировки значение TTL на раздающем интернет телефоне равно 63. iOS и Android девайсы имеют TTL=64, но после прохождения пакетов через раздающее устройства TTL теряет единицу и поступает к оператору со значением 63. Получается, оператор не видит ничего подозрительного и абонент может раздавать интернет без каких-либо ограничений и дополнительной оплаты.

Если принимающее интернет устройство имеет TTL по умолчанию не 64, нужно внести соответствующие изменения. Например, если вы хотите раздать интернет на ноутбук или компьютер, который имеет TTL=128, вам нужно изменить его на 64. Такая схема позволяет одновременно раздавать интернет на компьютер, а также iOS и Android устройства. Если по какой-то причине Вы не можете изменить TTL на ПК, то измените TTL раздающего устройства на 127. В итоге пакеты будут уходить к оператору с одинаковым значением и никаких подозрений не возникнет. Правда, у такой схемы есть недостаток. У вас не получится одновременно с компьютером подключить к интернету iOS и Android устройства, если у них TTL по умолчанию не 128.

Девайс раздает интернет с корректировкой и фиксацией TTL.

Данная схема является самой удобной. Вам необходимо изменить и зафиксировать TTL для любых исходящих пакетов. То есть, абсолютно не важно, какие устройства будут подключаться к интернету. Такой вариант будет идеальным для тех, кто не может изменить TTL на принимающем устройстве, например, smart-tv или игровые приставки. Игровые автоматы на гривны Недостаток этого способа заключается в том, что он подходит не для всех телефонов.

Заключение

Надеемся Вы поняли, что такое TTL и чем корректировка этого значения может быть полезна для обычного абонента. Мы постарались объяснить все коротко и доступно. Если у вас остались вопросы, задавайте их в комментариях и мы постараемся Вам помочь. Напомним, что этот обзор предназначен для того, чтобы вы получили представление о таком понятии, как TTL. Что касается практических способов изменения этого значения, то все они описаны в отдельной статье.

Общие сведения о микросхемах ТТЛ (TTL)

Интегральные микросхемы ТТЛ (транзисторно-транзисторная логика) представляют собой микросхемы малой степени интеграции, выполненные на биполярных транзисторах.

К явным недостаткам данной разработки можно отнести небольшое количество логических элементов на кристалл, критичность к напряжению питания и большой ток потребления, который в зависимости от типа микросхемы может колебаться от 10 до 120 mA.

Из-за фиксированного напряжения питания невозможно было использовать микросхемы ТТЛ в комплексе с другими микросхемами, например, с ЭСЛ (эмиттерно-связанной логикой) или МОП структурами. При необходимости нужно было использовать специальные микросхемы ПУ (преобразователи уровня). Кроме того напряжение питания данной серии составляет 5V при допуске 5%, а отечественная промышленность не выпускала элементов питания на такое напряжение, что резко ограничивало применение этой серии в компактной, переносной аппаратуре.

На рисунке изображён один из самых простых логических элементов — 3И - НЕ . Его основу составляет многоэмиттерный транзистор VT1. Уровень логического нуля на выходе появится при наличии высоких логических уровней на всех трёх входах одновременно. Транзистор VT2 при этом играет роль инвертора (элемента НЕ), а многоэмиттерный транзистор VT1 — элемента 3И. Схему И еще называют схемой совпадения.

Несмотря на все недостатки самая популярная серия из ТТЛ, серия К155 , активно внедрялась и постоянно пополнялась новыми разработками. Огромной популярностью и по сей день пользуется микросхема К155ЛА3. Её зарубежный аналог — SN7400 . На базе этой микросхемы можно собрать много простых электронных устройств, например, маячок на микросхеме. Также микросхему К155ЛА3 частенько используют в качестве простейшего генератора импульсов, как, например, в схеме бегущие огни на светодиодах.

Очень часто можно встретить микросхемы серии К155 с маркировкой КМ 155. Буква М указывает на то, что корпус микросхемы выполнен из керамики. В остальном между этими микросхемами отличий нет.

Серия К155 является самой полной серией микросхем ТТЛ. В неё входят около 100 микросхем различного назначения. В эту серию входят как все элементы базовой логики (И, ИЛИ, НЕ, И - НЕ, ИЛИ - НЕ) так и построенные на этих элементах более сложные узлы для выполнения логических операций: триггеры, регистры, счётчики, сумматоры. В серии К155 имеются даже микросхемы ПЗУ (постоянное запоминающее устройство) и ОЗУ (оперативное запоминающее устройство), правда, небольшой ёмкости. Это микросхемы К155РЕ3, 21, 22, 23, 24 и К155РУ1, 2, 5, 7.

Широкое распространение эта серия получила в электронно-вычислительной технике, контрольно-измерительных приборах и средствах автоматики.

Уровень логической единицы в микросхемах данной серии может находиться в интервале напряжений от 2,4 V до напряжения питания (т.е. 5 V). Уровень логического нуля не должен превышать 0,4 V. Длительная практическая работа с этой серией показала, что фактически уровень логической единицы не бывает ниже 3,2 V, а уровень логического нуля не превышает 0,2 V.

Все микросхемы, за исключением некоторых регистров, счётчиков и схем памяти, выпускаются в стандартном корпусе на 14 выводов. На корпусе микросхемы К155ИР1 хорошо видна выемка (иногда бывает точка), это зона ключа, она показывает первый вывод. 7-й вывод это корпус (минус питания). 14-й расположенный напротив первого, это +V пит.

Вся серия К155 является полным аналогом зарубежной серии SN74 . Она была разработана в США ещё в 1965 году, но продолжает выпускаться до сих пор. Такой же долгожительницей является и наша серия К155. Дело в том, что процесс напыления в вакууме на монокристалл кремния структур ТТЛ настолько хорошо отработан и прост, что себестоимость микросхем ТТЛ по сравнению с другими микросхемами фантастически низкая.

И, несмотря на простоту, серия К155 позволила в 70-е годы создать серию электронно-вычислительных машин ЕС ЭВМ или «Ряд-1, Ряд-2» от простой ЕС-1020 до мощной по тем временам машины ЕС-1065 с быстродействием 4 миллиона операций в секунду. Этот монстр был выпущен в 1985 году и благополучно работал в НИИ занятых разработками самых приоритетных направлений, таких как исследование космоса и проектирование новых видов ядерного оружия.

Серия К155 также широко применяется и в цифровых измерительных приборах. При разработке печатных плат для микросхем этой серии следует учитывать возможные броски тока, поэтому на платах микросхемы распространяют линейно с широкими шинами питания. Использование разветвлённых дорожек для подачи питания запрещено. Между шинами питания на каждый корпус ставятся блокировочные конденсаторы ёмкостью 10 - 15 нанофарад.

В процессе научных разработок серия К155 естественно развивалась. Так появилась серия К555, в которой ТТЛ принцип сохранён, но изменена схемотехника. В этой серии в коллекторных переходах транзисторов стоят диоды Шоттки. Поэтому микросхемы серии К555 называют ТТЛШ (ТТЛ и диод Шоттки). Благодаря этому потребляемая мощность снизилась примерно в два раза, а быстродействие заметно увеличилось. За рубежом аналогичная серия называется SN74LS . Вообще, такие разработки как ТТЛШ уже трудно отнести к транзисторного-транзисторной логике, так как в составе микросхем используются диоды, а это уже диодно-транзисторная логика (ДТЛ или англ. DTL).

Главная » Цифровая электроника » Текущая страница

Т акже Вам будет интересно узнать:

Я уже писал, о том, что такое IP-адреса и как проверить, под каким адресом вас видит внешний мир. Однако часто этой информации недостаточно для того, чтобы понять, какой все-таки адрес присвоен вашей сетевой карте, а также провести диагностику проблем подключения. Приведу список команд, которые можно использовать. (также у меня на сайте можно прочитать про визуальную настройку сетевых подключений)

Для начала необходимо открыть командную строку. Делается это так: нажимаете кнопку пуск, выбираете пункт «выполнить».

Альтернативные способ — нужно нажать клавишу Win (между Ctrl и Alt) и R одновременно, этот способ работает также и на Висте

Появляется окошко, в которое нужно вписать cmd и нажать ОК

Появляется та самая командная строка

В ней можно набирать и «вводить» команды, нажимая Enter. Результаты можно копировать — если нажать правую кнопку можно выделить нужный кусок, далее нужно еще раз нажать правую кнопку мыши.

Команда ping

Первая команда, с которой нужно познакомиться — это ping , проверяющую доступность заданного адреса. Введите команду ping 127.0.0.1 . Должно получиться что-то такое (если команда не ping не работает, то, возможно, решить проблему поможет инструкция по исправлению ошибки cmd no command):

C:\Documents and Settings\Администратор>ping 127.0.0.1

Обмен пакетами с 127.0.0.1 по 32 байт:

Ответ от 127.0.0.1: число байт=32 время

Как мы видим, на адрес 127.0.0.1 было отправлено 4 пакета, и они все достигли цели. Что же это был за адрес и почему я был уверен, что пакеты дойдут? Ответ прост — пакеты никуда не отправлялись, а оставались на вашем компьютере. Этот адрес специфичен и используется для loopback — пакетов, не уходящих никуда вовне. Отлично, можем теперь «пропинговать» адрес этого сайта: 212.193.236.38

Можно заметить только одно отличие — пакеты доходили не мгновенно, а за 3 миллисекунды. Надеюсь, у вас тоже не было никакой задержки при доставке пакетов, а главное — вы не увидели строчки типа

Превышен интервал ожидания для запроса.

Появление таких строчек означает, что часть пакетов теряется. Это свидетельствует о проблемах на линии или не сервере, к которомы вы обращаетесь.

Команда ipconfig

Следующая важная команда — ipconfig . Введите ее. У меня получилось вот так:

В данном случае получился адрес 192.168.17.139. Можно этот адрес тоже пропинговать (вы пингуйте свой) — пакеты должны доходить мгновенно. Основной шлюз — это адрес, на который компьютер отправляет пакеты, не найдя подходящего адреса в своей сети. Так, в моем случае все пакеты, кроме пакетов на 192.168.17.* будут отправлены на 192.168.17.240, а тот компьюьтер уже должен решить, что с ними делать и куда их переправлять дальше. Примечание: локальная сеть, то есть те адреса, пакеты на которые не отправляются на шлюз, определяется при помощи маски — нолик на последнем месте и 255 на всех предыдующих как раз и означает, что может буть произвольным последнее число в IP-адресе.

Одно из стандартных действий при поиске проблем подключения — пропинговать свой шлюз. Если пакеты до него не доходят, то, видимо, проблема где-то рядом, например, поврежден или плохо воткнут сетевой шнур. Также стоит знать, где физически находится компьютер с вашим основным шлюзом — у провайдера, где-то в доме, а, может, это — можем в вашей квартире. Примечание: некоторые компьютеры настроены не откликаться на запросы команды ping. Поэтому отсутствие пинга — не стопроцентная гарантия отсутствия связи с адресом.

Более подробную информацию можно получить командой ipconfig /all . У меня получилось:

Самую полезную информацию я выделил жирным. DHCP-сервер выделил мне динамиеский адрес на основе моего MAC-адреса или физического адреса. Мои DNS-сервера — это 212.192.244.2 и 212.192.244.3.

Другие команды

Команда tracert позволяет проследить путь пакетов от вашего компьютера до цели. Попробуйте, например протрассировать путь до этого сайта: tracert it.sander.su . Строки в выводе трассировки есть точки, через которые проходит пакет на своем пути.

Первой точкой будет ваш шлюз. Использование команды tracert позволяет найти источник проблем при связи с каким-либо адресом. Пакеты, посылаемые командой tracert, имеют показатель TTL — time to live — целое положительное число. Каждый маршрутизатор на пути уменьшает этот показатель на 1, если TTL падает до нуля, то трассировка заканчивается. По умолчанию используется начальный TTL равный 30, задать другое значение можно опцией -h .

Посмотреть таблицу маршрутизации можно командой route print , однако я не буду подробно останавливаться на ней — это тема отдельной статьи.

Команда netstat позволяет просмотреть список установленных соединений. В режиме по умолчанию команда пытается преобразовывать все IP-адреса в доманные имена (при помощи службы DNS), что может работать медленно. Если вас устраивает числовой вывод, вызывайте команду netstat -n . Если вас также интересуют открытые порты на вашем компьютере (что означает, что он готов принимать соединения по этим портам), то вызовите команду с ключом -a : например, netstat -na . Можно также вызвать команду netstat -nb , чтобы посмотреть, какие процессы установили соединения. Команда netstat -r эквивалентна команде route print .

Команда netsh позволяет изменить настройки сети через командную строку . Введите команду netsh interface ip show address . У меня получилось:

Запоминаем название (Ethernet) и теперь командой netsh interface ip set address name=»Ethernet» source=static addr=192.168.0.33 mask=255.255.255.0 gateway=192.168.0.1 gwmetric=30 задаем IP-адрес. Для динамического подключения: netsh interface ip set address name=»Ethernet» source=dhcp . На этом сайте также можно прочитать об интерактивной настройке параметров сети

comments powered by

C:\Documents and Settings\Администратор>ping 212.193.236.38

Обмен пакетами с 212.193.236.38 по 32 байт:

Ответ от 212.193.236.38: число байт=32 время=3мс TTL=55

Ответ от 212.193.236.38: число байт=32 время=3мс TTL=55

Ответ от 212.193.236.38: число байт=32 время=3мс TTL=55

Статистика Ping для 212.193.236.38:

Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь),

Приблизительное время приема-передачи в мс:

Минимальное = 3мсек, Максимальное = 3 мсек, Среднее = 3 мсек

C:\Documents and Settings\Администратор>

Ethernet — Ethernet адаптер:

DNS-суффикс этого подключения.

IP-адрес. . . . . . . . . .

Транзисторно-транзисторная логика (ТТЛ)

. . : 192.168.17.139

C:\Documents and Settings\Администратор>

C:\Documents and Settings\Администратор>ipconfig /all

Настройка протокола IP для Windows

Имя компьютера. . . . . . . . . : sander

Основной DNS-суффикс. . . . . . : MSHOME

Тип узла. . . . . . . . . . . . . : смешанный

IP-маршрутизация включена. . . . : нет

WINS-прокси включен. . . . . . . : нет

Порядок просмотра суффиксов DNS . : MSHOME

Ethernet — Ethernet адаптер:

DNS-суффикс этого подключения. . : srcc.msu.ru

Описание. . . . . . . . . . . . : Broadcom 440x 10/100 Integrated Controller

Физический адрес. . . . . . . . . : 00-16-D4-63-03-65

Dhcp включен. . . . . . . . . . . : да

Автонастройка включена. . . . . : да

IP-адрес. . . . . . . . . . . . : 192.168.17.139

Маска подсети. . . . . . . . . . : 255.255.255.0

Основной шлюз. . . . . . . . . . : 192.168.17.240

DHCP-сервер. . . . . . . . . . . : 192.168.17.240

DNS-серверы. . . . . . . . . . . : 212.192.244.2

212.192.244.3

C:\Documents and Settings\Администратор>

C:\Documents and Settings\Администратор>ipconfig /all

Настройка интерфейса «Ethernet»

DHCP разрешен: да

Метрика интерфейса: 0

Поле TTL в заголовке IP пакета

Dependences: IP, IPv4, Routing

TTL (Time To Live) — поле в заголовке IPv4 пакета. Оно задает «время жизни» пакета. Каждый маршрутизатор должен уменьшать значение поля TTL при прохождении пакета на единицу. Это приведет к изменению заголовка пакета, следовательно, маршрутизатор должен пересчитать контрольную сумму IP-заголовка.

Изначально поле TTL должно было дополнительно уменьшаться на единицу каждую секунду, пока пакет обрабатывается маршрутизатором. Но в последствии от ежесекундного уменьшения отказались и не всегда упоминают этот факт (факт присутствия в протоколе данного правила).

Что такое значение TTL и как с его помощью обмануть оператора

Причина отказа проста — большинство маршрутизаторов, как правило, обрабатывают поток пакетов настолько быстро, что они не задерживаются на секунду.

Когда значение поля TTL достигает 0, маршрутизатор должен отбросить такой пакет. Следовательно имеет место правило: маршрутизатор не пропускает пакеты с нулевым значением поля TTL. В этом действии кроется основное предназначение этого поля — избежание петель маршрутизации. В случае ошибочной маршрутизации, пакет не будет ходить бесконечно по сети, а отбросится через некоторое время.

Пересмотрев предназначение поля TTL, в протоколе IPv6 вместо него было введено новое поле Hop Limit. Hop Limit уже означает не время жизни пакета, а максимальное количество хопов, которое может пройти пакет, перед уничтожением.

На принципе работы маршрутизаторов с полем TTL основывается утилита traceroute. Ее задача — отобразить все хопы по пути следования пакета от источника к назначению. Это достигается следующим образом: утилита начинает отправлять UDP-сегменты на несуществующий порт хоста назначения, в которых значение поля TTLв IP-пакете начинается с 1 и с каждым разом увеличивается на единицу. С каждым разом последующий маршрутизатор откидывает пакет, отправляя уведомление отправителю. Утилита traceroute получает уведомление, откуда берет адрес отправителя (адрес маршрутизатора). Когда же сегмент достигает назначения, то хост отправляет уведомление, что порт недоступен.

Некоторые системы настроены таким образом, что они не отправляют ICMP трафик. В таком случае мы видим time out в выводе утилиты traceroute. Это происходит из-за того, что не приходит уведомление об уничтожении (отбросе) пакета.

Задание 1: Рассмотреть вывод утилиты traceroute в двух случаях: когда параметром передается существующий адрес и когда несуществующий. Почему, в случае несуществующего хоста, traceroute выдает информацию про маршрутизаторы (ведь назначения не существует)? Какими основными принципами маршрутизации это объясняется?
Задание 2: В TCP/IP стеке старой ОС BSD была ошибка, из-за которой система пропускала пакеты со значением TTL=0. В случае, когда на одном из промежуточных маршрутизаторов поставить данную ОС, как изменится вывод утилиты traceroute?

Разные операционные системы могут отправлять пакеты с разным начальным значением поля TTL. Например, Linux берет по умолчанию значение 64, а Windows — 128. Таким образом можно бегло отличить кто является источником трафика (если конечно в сети только ОС с разным значением TTL по умолчанию).

Задание 3: Как определить Internet-провайдеру, что непосредственный клиент раздает свой канал другим машинам своей сети посредством NAT?

Благодарим за статью: Дмитрия Подгорного

Элементная база различных логик: схемы, ТТЛ, ТТЛШ, КМОП

нет, максимальное значение 8 бит, те 2^8=255 (тк считается от 0), ОС или роутер сами устанавливают значение TTL в пакете. Для XP это 64, в Ubuntu и Fedora тоже 64, хотя встречается и 128.
—- Вот что говорит Википедия
В IPv4 TTL представляет собой восьмиразрядное поле IP-заголовка. Оно находится в девятом октете из двадцати. Значение TTL может рассматриваться как верхняя граница времени существования IP-датаграммы в сети. Поле TTL устанавливается отправителем датаграммы, и уменьшается каждым узлом (например, маршрутизатором) на пути его следования, в соответствии со временем пребывания в данном устройстве или согласно протоколу обработки.

Если поле TTL становится равным нулю до того, как датаграмма прибудет в пункт назначения, то такая датаграмма отбрасывается и отправителю отсылается ICMP-пакет с кодом 11 - «Превышение TTL».

Отбрасывание пакетов с истекшим временем жизни позволяет избежать ситуаций, когда недоставленные датаграммы продолжают «вечно» циркулировать в системе Интернет, перегружая сеть (например, при образовании зацикленных маршрутов из-за некорректной маршрутизации).

Изначально, по стандарту RFC791, время жизни (TTL) в протоколе IPv4 должно было измеряться в секундах (отсюда и название). Каждая секунда ожидания в очереди узла (например, маршрутизатора), а также каждый переход на новый узел, через который проходит датаграмма, должен был уменьшить значение TTL на одну единицу. На практике, это не прижилось и поле TTL просто уменьшается на единицу на каждом транзитном узле (хопе), через который проходит датаграмма. Для того чтобы отразить это, в протоколе IPv6 поле TTL переименовано в «хоп лимит» (Hop Limit).

libastral.so не подключается, а бубен временно не доступен. Пишите подробнее.

outlet hoganborse louis vuitton outlethogan rebel uomoborse louis vuittonborse louis vuitton prezzi e modellihogan outlet onlineoutlet hoganborse louis vuitton 2013hogan shoesborse louis vuitton prezzi e modelli

ugg moccasinsugg boots for menuggugg bailey button tripletugg sandalsugg kids

uggs on sale cheap

UGG boots Black FridayCyber Monday UGG saleUGG Black Friday saleUGG Black Fridaycoach outlet black fridayUggs Black FridayBlack Friday UggsCyber Monday UGG bootsbest Uggs Black FridayUggs Cyber Monday saleshttp://www.mediasea.co.zabuy Uggs Black FridayBlack Friday Michael Kors dealsMichael Kors Black Friday dealsUggs Black Friday dealsCyber Monday UggsCyber Monday UGG saleBlack Friday Michael Kors dealMichael Kors Cyber MondayMichael Kors Black Friday dealMichael Kors Black Fridayblack friday coachUGG Black Friday saleUggs on sale Black FridayCyber Monday Michael Kors saleCyber Monday UGG saleCyber Monday UGG saleUggs Cyber Monday dealsBlack Friday UggsUGG Black Friday saleBlack Friday Michael KorsCyber Monday Michael Kors salesUGG Black Friday salebuy Uggs Black FridayUggs Black Friday 2015Cyber Monday Michael Kors salecoach black friday dealshttp://www.mediasea.co.zaCyber Monday UGG bootsUggs Black Friday 2015

Микроконтроллеры в Arduino (ATmega328, 168, 2560) используют, кроме прочих интерфейсов, аппаратно реализованный последовательный интерфейс (UART). В МК ATmega2560 (Arduino Mega) реализовано сразу четыре UART. Интерфейс использует два провода — RX (прием) и TX (передача), где цифровой сигнал кодирует значения бит «0» и «1» напряжением на проводе. Значению «0» соответствует 0В, а значению «1» — рабочее напряжение интегральной схемы (5В или 3.3В, в зависимости от модели и режима работы МК). Такой тип кодирования также называют транзистор-транзисторной логикой (ТТЛ), т.к. напряжение на проводе напрямую влияет на состояние (открытое/закрытое) транзисторов, обеспечивающих приемо-передачу цифрового сигнала.

Последовательный порт компьютера (COM-порт), который все реже можно видеть в современных моделях компактных компьютеров, работает по старому телекоммуникационному стандарту RS232, где кодирование сигнала иное: значение «0» кодируется напряжением от +3В до +25В, а «1» — отрицательным напряжением от -3В до -25В. В COM-портах персональных компьютеров обычно встречается напряжение +13В и -13В.

Большая разница напряжений делает RS232 соединение более устойчивым к помехам, однако, в современных цифровых устройствах чаще используется ТТЛ-совместимый последовательный порт, либо USB — гораздо более современный и высокоскоростной интерфейс.

На приведенном рисунке для сравнения отображены сигналы TTL serial и RS 232, снятые при передаче значения одного байта.

Для преобразования сигнала RS232 в TTL и обратно необходимо его инвертировать (хотя это можно сделать и программно) и преобразовать напряжение. Обычно для этого используются микросхемы типа MAX232. Иногда используют упрощенные самодельные схемы, обеспечивающие инверсию сигнала и преобразование напряжения или прибегают к программно-аппаратным решениям (программная инверсия, аппаратное изменение напряжения).

В случае с Arduino (Uno, Mega и пр.) используется USB-TTL serial контроллер, обеспечивающий работу с МК через ТТЛ-совместимый последовательный интерфейс. В старых моделях для этого использовался чип FTDI FT232, в новых — ATmega8U или ATmega16U. Выводы последовательного интерфейса МК так же доступны для прямого подключения. Для Uno это выводы D0, D1, а у модели Mega имеется сразу несколько последовательных интерфейсов. Подключать к этим выводам RS232 порт нельзя — корректно работать он не сможет из-за другого типа кодирования, а высокое напряжение может повредить МК.

Для подключения к ТТЛ-совместимому последовательному порту с компьютера удобно использовать USB-TTL serial адаптер. Однако, USB-TTL serial адаптеры общего назначения продаются только в специализированных магазинах и, нередко, по неоправданно высокой цене. При этом гораздо более популярны (и дешевы) USB-RS232 адаптеры. При ближайшем же рассмотрении, любой USB-RS232 адаптер содержит два основных компонента — микросхемы USB-TTL serial адаптера и RS232-TTL serial преобразователя.

У меня нашелся USB-RS232 адаптер, схема которого была спрятана в легко разбираемый корпус DB9 разъема (иногда корпус делают литым и добраться до схемы сложнее). Адаптер оказался построен на популярных чипах Prolific PL2303 (USB-TTL serial адаптер) и Zywyn ZT213 (RS232-TTL адаптер).

Что такое TTL в пинге?

Посмотрев на спецификацию PL2303 выяснил, что мне нужны выводы 1 (TX) и 5 (RX), к которым я подпаял провода, никак не меняя схему (так что RS232 часть осталась работоспособной). Землю взял с 5го контакта DB9, чтобы не трогать 7й вывод микросхемы.

В итоге получился дешевый и сердитый USB-TTL serial адаптер. На скриншоте: Serial monitor от Arduino IDE подключен по USB, а realterm — напрямую к D0,D1 через USB-TTL serial адаптер.

Слышал, что многие data-кабели для мобильных телефонов также содержат USB-TTL serial контроллеры, хотя все большее количество современных моделей подключаются к USB интерфейсу напрямую, не требуя специальных адаптеров. Многие микроконтроллеры снабжены USB интерфейсом, в частности ATmega8U и ATmega16U, которые используются в Arduino в качестве USB-TTL serial контроллеров, предоставляя доступ к ATmega328, который USB интерфейса не имеет.

TTL — что такое? Время жизни (TTL) — это механизм, используемый для ограничения продолжительности жизни данных в сети. Данные отбрасываются, если истекает заданное значение. Идея создания заключается в том, чтобы предотвратить распространение любого пакета данных на неопределенный срок.

Определение

Что такое TTL? Термин «время жизни» относится к количеству времени или «перескокам», когда пакет устанавливается в сети, прежде чем отбрасывается маршрутизатором. Технология также используется в других контекстах, включая кэширование CDN и кэширование DNS.

TTL является значением в пакете IP-протокола, который сообщает сетевому маршрутизатору, был ли пакет слишком длинным. В IPv6 поле в каждом пакете было переименовано. TTL устанавливается в восьмом двоичном разряде в заголовке пакета и используется для предотвращения бесконечного распространения пакетов в интернете или в другой сети. При пересылке IP-пакета маршрутизаторы должны уменьшать TTL по меньшей мере на один порядок. Если поле пакета достигло нуля, маршрутизатор, обнаруживающий его, отбрасывает пакет и отправляет сообщение ICMP (протокол управления через интернет) обратно на исходный узел.

Как работает технология?

Когда пакет информации создается и отправляется через интернет, существует риск того, что он будет продолжать переходить с маршрутизатора на маршрутизатор на неопределенный срок. Чтобы уменьшить эту возможность, пакеты создаются с истечением срока действия, называемым пределом времени жизни. Пакет TTL также может быть полезен при определении того, как долго он находился в обращении, и позволяет отправителю получать информацию о пути пакета через интернет.
Каждый пакет имеет место, где он хранит числовое значение, определяющее, насколько долго он должен продолжать перемещаться по сети. Каждый раз, когда маршрутизатор получает пакет, он вычитает одно значение из счета TTL и затем передает его в следующее место в сети. Если в любой момент счетчик TTL равен нулю после вычитания, маршрутизатор отбросит пакет и отправит сообщение ICMP обратно на исходный узел.

Техническое описание процесса

IP TTL устанавливается первоначально системой, отправляющей пакет. Его можно разместить в любое значение от 1 до 255. Разные операционные системы устанавливают разные значения по умолчанию. Каждый маршрутизатор, который получает пакет, вычитает не менее 1 из счета. Если счетчик остается больше 0, маршрутизатор перенаправляет пакет, в противном случае он отбрасывает его и отправляет сообщение управления интернет-протоколом (ICMP) обратно на исходный узел, что может вызвать повторную отправку.

Точка ограничения TTL/hop должна поддерживать непрерывный поток пакетов, застрявших в циклах маршрутизации (возможно, из-за некорректных таблиц с данными и засорения сетей). В облаках Multiprotocol Label Switching (MPLS) TTL копируется из IP TTL, когда IP-пакет входит в облако. При выходе значение MPLS TTL копируется в соответствующее поле до тех пор, пока оно меньше значения в поле.

Изменяем TTL

Утилиты ping и traceroute используют значение TTL, чтобы попытаться достичь заданного хост-компьютера или проследить маршрут до этого хоста. Traceroute отправляет поток пакетов с последовательно более высокими TTL, поэтому каждый будет отброшен в свою очередь следующим скачком (маршрутизатором) на пути до места назначения: первый пакет имеет TTL одного и отбрасывается первым маршрутизатором, второй — TTL из двух и отбрасывается следующим маршрутизатором. Время между отправкой пакета и получением ответного ICMP-сообщения используется для вычисления каждого последующего времени перемещения.

  • 0 — хостом;
  • 1 — подсетью;
  • 32 — сайтом;
  • 64 — регионом;
  • 128 — континентом;
  • 255 — неограничен.

Кэширование TTL и DNS

Что такое TTL в контексте DNS? Значение сообщает локальным серверам, как долго запись должна храниться локально прежде, чем новая копия записи будет восстановлена ​​из DNS. Хранилище записей известно, как DNS-кэш, а акт хранения записей называется кэшированием.

Термин «время жизни» также используется для описания времени, в течение которого запись DNS может быть возвращена из кэша. В этом контексте USB TTL представляет собой числовое значение, заданное в записи DNS на авторитетном DNS-сервере для домена, определяющее количество секунд, за которое сервер кэширования может предоставить свое значение для записи. Когда прошло нужное количество секунд с момента последнего обновления, кэширующий сервер снова выйдет на сервер и получит текущее (и, возможно, измененное) значение для записи. Характерные особенности процесса кеширования, где TTL:

  • Является частью системы доменных имен.
  • Устанавливается авторитетным сервером имен для каждой записи ресурса.
  • Используется для целей кэширования. Например, значение TTL для www.dnsknowledge.com составляет 86400 секунд (24 часа). Чем выше TTL записи, тем дольше будет кэшироваться информация, и тем меньше потребуется запросов, которые клиент должен будет сделать, чтобы найти домен.
  • Используется разрешающим сервером имен для ускорения решения путем локального кэширования результатов.

TTL — что такое и как это работает?

В HTTP время жизни отображает количество секунд, для которых может быть возвращен кэшированный веб-контент до запроса сервера. Значение по умолчанию определяется настройками на веб-сервере, но может быть переопределено тегами управления кэшем, которые определяют, какие типы серверов могут кэшировать данные.

Пакет является фундаментальной единицей информационного транспорта во всех современных компьютерных сетях и в других сетях связи. Маршрутизатор представляет собой электронное устройство или программное обеспечение сетевого уровня, которое соединяет локальные или глобальные сети и пересылает пакеты между ними.

Общие значения

Обычно значение составляет 86400 секунд, что составляет 24 часа. Это хорошая отправная точка для большинства записей. Однако вы можете установить более высокий TTL Patch для записей MX или CNAME, поскольку они будут меняться очень редко. Если ваш сервис имеет решающее значение, рекомендуется установить TTL на 1 час (3600 секунд).

Случаи применения

Помимо трассировки пакетов маршрутов через интернет, TTL используется в контексте кэширования информации за определенный период времени. Вместо того, чтобы измерять время в перелетах между маршрутизаторами, каждый из которых может занимать определенное количество часов, некоторые случаи использования сети работают более традиционным образом.

CDN обычно использует TTL PL, чтобы определить, как долго кэшированный контент должен обслуживаться с пограничного сервера CDN, прежде чем новая копия будет извлечена с исходного сервера. Правильно устанавливая время между загрузками сервера происхождения, CDN может обслуживать обновленный контент без непрерывного распространения запросов на исходное. Эта оптимизация позволяет CDN эффективно обслуживать контент ближе к пользователю, уменьшая требуемую пропускную способность от источника.

В контексте записи DNS TTL представляет собой числовое значение, определяющее, как долго сервер кэша DNS может обслуживать запись, прежде чем обратиться к авторитарному DNS-серверу и получить новую копию записи.

Раз вы сюда попали, скорее всего вам нужно поменять TTL для обхода ограничений мобильного оператора на раздачу трафика, но вы не понимаете, что такое TTL, и зачем его менять. Постараюсь объяснить.

Понятие TTL

В интернете все передается пакетами – маленькими порциями данных. Они ходят от маршрутизатора к маршрутизатору (то же самое, что от роутера к роутеру) по узлам сети. Например, ваш мобильный телефон тоже может стать роутером, если его использовать для раздачи данных на компьютер и другие устройства.

TTL расшифровывается как Time To Live, то есть время жизни пакета данных в секундах. При прохождении пакета через очередной роутер TTL уменьшается на единицу. Нужно это для того, чтобы пакет бесконечно не гулял по сети, если не сможет дойти до адресата. Роутер, при попадании в который пакет исчерпал свое значение TTL, посылает отправителю сообщение ICMP о том, что данный пакет превысил максимально допустимое время своего пребывания в сети. Максимальное значение TTL=255. Причем разные операционные системы генерируют пакеты с разным TTL.

Если говорить совсем простыми словами…
Представьте себе, что вам 5 лет и вы хотите кушать (вы – пакет). Вы идете к папе и говорите: «Папа, я хочу кушать». Ваш папа смотрит телевизор, согласно таблице маршрутизации о посылает вас к маме. Вы идете к ней и просите «Мамааа, я хочу кушать». Мама болтает с подругой по телефону и согласно своей таблице маршрутизации посылает вас к папе. И так вы ходите как дурак от папы к маме и обратно, туда-сюда, туда-сюда, а все потому что криворукие админы (родители папы и мамы) неправильно настроили таблицу маршрутизации. Чтобы защититься от таких ситуаций придумали понятие TTL (Time To Live), что применительно к нашей ситуации означает количество терпения у мальчика, пока он не скажет «достало» и не упадет перед ногами мамы или папы в беспомощном состоянии. Последний, по правилам (стандарты – это «так заведено в семье»), обязан послать короткий нелестный отзыв адрес того, кто послал мальчика кушать. Это так называемый ICMP-пакет «мальчик сдох»

Ок, так при чем тут операторы? Дело в том, что по полученным от абонента TTL оператор узнает, раздается интернет или нет.

Как операторы узнают, что трафик раздается

Потому что ему от абонента начинают приходить пакеты с разными значениями TTL. На это есть две причины:

  • Во-первых, у разных устройств TTL может быть разным. А при раздаче интернета появляется ведь второе устройство – то, на которое мы раздаем интернет. Так у телефона на iOS или Android значение TTL равно 64, а у компьютера на Windows – 128. И при раздаче интернета с телефона на компьютер появится два разных значения TTL: 64 и 128. Оператору уходят пакеты и с TTL=64, и TTL=127 (при отправке пакета с компьютера через раздающий телефон-роутер значение 128 уменьшается на единицу).
  • Во-вторых, даже если TTL устройств одинаков (с телефона на телефон), раздающий телефон опять же уменьшает TTL на 1 как всякий нормальный роутер. И оператору уходят пакеты с разными значениями TTL=64 (если это пакет с раздающего телефона) и TTL=63 (пакет с потребляющего телефона).

Итак оператор получает пакеты с разными значениями:

  • TTL пакета с самого телефона.
  • TTL пакета с потребляющего трафик устройства, уменьшенное на единицу при проходе через телефон-роутер.

На всякий случай прикладываю картинки.

А при раздаче интернета телефон передает оператору пакеты с тремя разными значениями TTL: 64 от себя, 127 от компьютера и 63 от потребляющего телефона.

Оператор замечает такую ситуацию разброса значений TTL, делает вывод, что происходит раздача трафика и принимает карательные меры в отношении абонента-нарушителя, желающего поживиться безлимитным интернетом на полную катушку, раздав его куда хочется. Как же скрыть раздачу от оператора? Очевидно, надо сравнять TTL – привести их всех к одному значению. Для этого можно

  1. Либо поменять TTL на потребляющем устройстве,
  2. Либо на раздающем телефоне сделать так, чтобы пакеты к оператору шли всегда с одним значением TTL.

Приведение TTL к единому значению для обхода ограничений оператора

  • Можно привести TTL к единому значению 63, поменяв его на раздающем телефоне и на принимающем компьютере. Это изменение TTL без фиксации.

  • Можно ничего не менять на принимающих устройствах, но «заставить» раздающий телефон всегда отправлять оператору пакеты с TTL=63, независимо от того, откуда они: с самого раздающего телефона или с принимающего устройства (компьютера или телефона). Это фиксация TTL.

Вторая схема удобнее, но она пригодна не для всех телефонов.

Итак, мы рассмотрели, что такое TTL, и зачем его нужно менять. Как именно изменить TTL требует рассмотрения в отдельной статье. .

Интернет-центр Keenetic Lite предназначен для подключения к Интернету, районной сети и IP-телевидению по выделенной линии Ethernet. С его помощью можно создать собственную домашнюю сеть, выходить в Интернет с нескольких компьютеров, играть в многопользовательские онлайн-игры, участвовать в файлообменных сетях и одновременно с доступом в Интернет пользоваться информационно-развлекательными ресурсами районных сетей и локальных серверов вашего провайдера. Встроенная точка доступа беспроводной сети Wi-Fi нового поколения с увеличенным радиусом действия обеспечивает подключение к интернет-центру ноутбуков, игровых приставок, медиаплееров и других сетевых устройств стандарта IEEE 802.11n на скорости до 150 Мбит/с*. Аппаратно реализованная функция TVport дает возможность без дополнительных устройств подключить к интернет-центру ресивер IP-телевидения и принимать телепередачи высокой четкости без потери качества даже при загрузке торрентов/файлов на максимальной скорости. Удобная программа NetFriend поможет настроить доступ в Интернет для десятков известных провайдеров, домашнюю беспроводную сеть, проброс портов и способ подключения ресивера IPTV, не обращаясь за помощью специалистов.

Настройка сетевой карты компьютера перед установкой маршрутизатора (роутера):

Настройка роутера ZyXel Keenetic Lite

Настраивать роутер ZyXel Keenetic Lite (Кинетик Лайт) мы принципиально будем через вэб-интерфейс, позволяющий провести тонкую подстройку всех необходимых параметров. Чтобы войти в вэб-интерфейс нашего Кинетик Лайт, Вам необходимо в любом браузере компьютера (Opera, Internet Explorer, Mozilla ) в адресной строке перейти по адресу: http://192.168.1.1 (этот адрес маршрутизатор ZyXel Keenetic Lite имеет по умолчанию). Вы увидите приветствие интернет-центра Зайксель на экране компьютера:

Для входа в вэб-интерфейс Keenetic Lite потребуется ввести имя пользователя и пароль, а затем нажать на Вход . По умолчанию: Имя пользователя – admin, Пароль - 1234.

Настройка ZyXel Keenetic Lite в режиме PPTP VPN

Настройка ZyXel Keenetic Lite в режиме PPTP VPN начинается с процесса Интернет - Подключение

Для этого в поле Настройка параметров IP необходимо перевести опцию в положение Ручная (эта опция подразумевает ручное указание параметров TCP/IP для соединения через PPTP, но некоторые провайдеры могут выдавать их и автоматически).

В случае ручного назначения параметров в поле IP-адрес необходимо указать IP адрес, который выдает провайдер по договору (см. свой договор или обращайтесь в техподдержку).

В поле Маска сети следует указать значение маски подсети, которая используется провайдером.

В поле Основной шлюз требуется указать адрес основного шлюза в сети провайдера.

В поле DNS 1 (сервер доменных имён) мы укажем значение IP адреса предпочитаемого DNS сервера.

После чего ниже в DNS 2 укажем значение альтернативного DNS-сервера.

В поле Использовать MAC-адрес Вы можете занести своё, особое значение MAC-адреса (физического адреса) для роутера Keenetic Lite. Поскольку каждое сетевое устройство имеет свой уникальный МАС адрес, данная опция позволяет избежать звонка в службу поддержки в случае смены сетевого оборудования. Вы можете сделать в роутере МАС-адрес, идентичный МАС-адресу Вашего компьютера, на котором Вы работали до установки маршрутизатора. Вариант по умолчанию оставит роутер ZyXel Keenetic с «родным» MAC-адресом. «Родной» МАС-адрес указан прямо в меню, кроме того, MAC можно узнать на наклейке, что расположена на днище роутера (шесть пар цифро-букв). Ниже в данной опции располагается вариант Взять с компьютера, с помощью него ZyXel сам подхватит МАС-адрес сетевой карты того компьютера, с которого Вы в данный момент настраиваете маршрутизатор. Это избавит Вас от необходимости набивать значение МАС адреса вручную (полезно, если данный компьютер и был подключен к Интернету до установки роутера). Кроме того, с помощью опции Установить Вы можете ввести другое значение МАС-адреса для интернет-центра. Если Вы желаете использовать роутер с «неродным» МАС адресом, то воспользуйтесь данной возможностью! Если же хотите зарегистрировать MAC-адрес роутера, то придется совершить звонок по номеру 6-13-13 и сообщить ему «родной» МАС-адрес Зайкселя.

Пункт Отвечать на Ping-запросы из Интернета позволит Вашему Keenetic Lite оставаться «видимым» для технической поддержки Вашего провайдера, когда те захотят Вас «пропинговать». Активировать данный пункт необязательно.

Авто-QoS – активирует систему приоритета полезного исходящего траффика (включайте по своему усмотрению).

Не уменьшать TTL – не позволяет роутеру уменьшать параметр TTL на единичку при прохождении траффика через NAT.

Разрешить UPnP - включает возможность автоматической настройки Интернет-приложений для их беспрепятственной работы через NAT роутера.

Когда все необходимые опции в данном меню заполнены, нажимаем на Применить и переходим к следующему этапу.

Параметры PPTP VPN в ZyXel Kinetic Lite задаются в пункте Интернет – Авторизация

Протокол доступа в Интернет выберите вариант PPTP .

В поле Адрес сервера необходимо указать адрес VPN-сервера (vpn.rgtsparus.ru ).

В поле Имя пользователя необходимо указать логин для VPN-соединения (пароль на VPN совпадает с паролем для входа в личный кабинет).

В поле Пароль следует указать пароль для соединения с VPN-сервером (пароль совпадает с паролем для входа в личный кабинет).

Метод проверки подлинности определяет тип аутентификации на VPN-сервере устанавливаем в автоопределении .

Безопасность данных (MPPE) определяет используется ли шифрование в VPN-туннеле до провайдера. Обычно шифрование не используется, поэтому выбираем вариант Не используется .

Также следует отметить галочкой пункт Получать IP-адрес автоматически , чтобы VPN-сервер провайдера выдавал IP автоматически.

В поле размер MTU Вы задаете размер сетевого пакета, значение можно оставить по умолчанию (или поставить его в районе 1100-1300 в случае нестабильного соединения).

После заполнения всех необходимых опций остается только нажать на кнопку Применить для сохранения настроек Вашего Keenetic Lite.

Настройка Wi-Fi соединения в роутере ZyXel Keenetic Lite (Кинетик Лайт)

Маршрутизатор ZyXel Keenetic поддерживает стандарты беспроводной связи IEEE 802.11n/g/b, что гарантирует возможность работы с большинством существующего сегодня Wi-Fi оборудования. Настройка Wi-Fi сети в Keenetic Lite начинается Сеть Wi-Fi - Соединение

Включить точку беспроводного доступа – включает и выключает Wi-Fi модуль в роутере Keenetic.

Имя сети (SSID) – название Вашей будущей беспроводной WiFi сети. Здесь можно ввести своё значение. Под этим названием Вы будете видеть беспроводную сеть роутера ZyXel в своих Wi-Fi клиентах.

Пункт Скрывать SSID – отключает рассылку сетевого идентификатора (SSID), что позволяет спрятать свою беспроводную сеть от устройств с ОС Windows, являясь, своего рода, средством безопасности. С помощью данной опции можно дополнительно обезопасить Вашу беспроводную сеть от начинающих хакеров. Дело в том, что компьютеры с операционной системой Windows «не видят» Wi-Fi сети со скрытым SSID. В то же время при помощи специальных утилит найти такие сети не составляет особой проблемы. Поэтому защититься таким образом Вы сможете разве что от своих соседей. Если же Вы отключите рассылку SSID, то Вам придется вручную создать профиль для подключения в своем ПК (понадобится знание SSID и пароля для подключения к беспроводной сети – про пароль смотрите ниже).

Стандарт определяет стандарты беспроводной связи, по которым будет работать Ваша сеть Wi-Fi дома. Мы рекомендуем оставить вариант 802.11g/n, чтобы обеспечить поддержку всего актуального клиентского Wi-Fi оборудования. Но имейте в виду, что подключение клиентского устройства 802.11g просадит скорость беспроводной сети 802.11n до уровня 27 Мбит/с.

Канал – выбор канала для беспроводной Wi-Fi связи. Не рекомендуем иметь дело с каналом номер 6, поскольку большинство Wi-Fi оборудования по умолчанию работает именно на этом канале. В идеале рекомендуем остановить свой выбор на канале 1 или канале 12, чтобы минимизировать вероятность интерференции с сетями соседей.

Мощность сигнала Вы можете снизить мощность излучения антенны Вашего Keenetic Lite. Можно опытным путем подобрать значение так, чтобы роутер по-прежнему пробивал всю квартиру и при этом Wi-Fi сеть не сильно "высовывалась" бы из окон. Это снизит вероятность взлома сети со стороны злоумышленников.

После чего жмете кнопку Применить и переходите к следующему этапу настройки Wi-Fi в ZyXel Keenetic Lite.

Теперь настроим безопасность Wi-Fi сети нашего Keenetic Lite (Кинетик Лайт). Сделать это можно в Сеть Wi-Fi – Безопасность

В опции Проверка подлинности задается тип шифрования Wi-Fi сети. С учетом уязвимости WEP-протокола, мы рекомендуем использовать в своей сети исключительно WPA/WPA2 шифрование. Поэтому останавливаем свой выбор на универсальном варианте WPA-PSK/WPA2-PSK .

Тип защиты определяет с помощью какого алгоритма будет осуществляться шифрование в беспроводной Wi-Fi сети. Можно выбрать вариант TKIP/AES , чтобы минимизировать вероятность конфликтов с беспроводными клиентами (а вообще AES – куда более стойкий вариант, но не все Wi-Fi клиенты с ним работают без проблем).

Опция Формат сетевого ключа определяет в каких символах Вы зададите ключ беспроводной сети. Удобнее работать с символами ASCII .

В поле Сетевой ключ (ASCII) необходимо указать ключ шифрования Вашей Wi-Fi сети. Он должен быть длиной не менее 8 символов. Рекомендуем использовать в пароле на Wi-Fi заглавные/прописные буквы, цифры и специальные символы. Это минимизирует возможность подбора пароля к Вашей беспроводной сети. Разумная длина WPA пароля: 8-12 символов.

Отметьте галочкой Показывать сетевой ключ , чтобы видеть символы, которые Вы вводите выше.

После чего следует нажать на Применить для сохранения настроек беспроводной сети внутри вашего интернет-центра ZyXel Keenetic.

На этом настройку беспроводной WiFi сети в интернет-центре ZyXel Keenetic Lite можно считать оконченной. Теперь Вы можете попробовать подключить ноутбук или компьютер к роутеру по Wi-Fi, используя назначенный пароль.